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CMSC201
Computer Science I for Majors

Lecture 20 – Project 3
and Miscellaneous Topics
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Last Class We Covered

• Dictionaries

– Creating

– Accessing

– Manipulating

– Methods

• Hashing

• Dictionaries vs Lists
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Any Questions from Last Time?
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Today’s Objectives

• To understand more about how data is 
represented inside the computer

– Binary numbers

• To see the benefits of short circuit evaluation

• To discuss details of Project 3

– How many boards to have?

4
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Binary Numbers
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Binary Numbers

• Computers store all information (code, text, 
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the 
computer know what type of item/object it is

• But why use binary? 

6



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc. 

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”

7
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Decimal Example

• How do we represent a number like 50,932?

8

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 =     2

3 x 101 =    30

9 x 102 =   900

0 x 103 =  0000

5 x 104 = 50000

------

Total:   50932



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Another Decimal Example

9

6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493
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Binary Example

• Let’s do the same with 10110 in binary

10

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 =  0

1 x 21 =  2

1 x 22 =  4

0 x 23 =  0

1 x 24 = 16

--

Total: 22



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary to Decimal Conversion

11

• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add 

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141
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Exercise: Converting From Binary

12

• What are the decimals equivalents of…

101       

1111      

100000    

101010    

0010 1010 

1000 0000

Longer binary numbers are 
often broken into blocks of 
four digits for the sake of 

readability
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Exercise: Converting From Binary

13

• What are the decimals equivalents of…

101       = 4+0+1        = 5

1111      = 8+4+2+1      = 15

100000    = 32+0+0+0+0+0 = 32

101010    = 32+0+8+0+2+0 = 42

0010 1010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128
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Decimal to Binary Conversion

14

• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest  binary value
• Step 3: If binary value is smaller, put a 1 there and 

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

1 0 1 11 0 0 0
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Converting to Binary

• What are the binary equivalents of…

9

27

68

216

255

15
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Converting to Binary

• What are the binary equivalents of…

9    = 1001 (or 8+1)

27   = 0001 1011 (or 16+8+2+1)

68   = 0100 0100 (or 64+4)

216  = 1101 1000 

(or 128+64+16+8)

255  = 1111 1111

(or 128+64+32+16+8+4+2+1)

16
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Binary Tips and Tricks

• Some “sanity checking” rules for conversions:

1. Binary can only be 1 or 0

– If you get “2” of something, it’s wrong

2. Odd numbers must have a 1 in the ones column

– Why?  (And what’s the rule for even numbers?)

3. Each column’s value is the sum of all of the 
previous columns (to the right) plus one

– In decimal, what column comes after 999?

17
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“Short Circuit” Evaluation
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Review: Complex Expressions

• We can put multiple operators together!
bool4 = a and (b or c)

• What does Python do first?

– Computes (b or c)

– Computes a and the result

19

This isn’t 
strictly true!
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Short Circuit Evaluation

• Python tries to be efficient (i.e., lazy), and so it 
won’t do any more work than necessary

– If the remainder of an expression won’t change 
the outcome, Python doesn’t look at it

• This is called “short circuiting”

– It’s a powerful tool, and can simplify the 
conditionals in your programs

20
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Short Circuit Evaluation – Rules

• For obvious reasons, short circuiting behaves 
differently for and and or statements

• “and” statements short circuit as soon as an 
expression evaluates to False

• “or” statements short circuit as soon as an 
expression evaluates to True

21
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Short Circuiting – and

• Notice that in the expression:

bool1 = a and (b or c)

• If a is False

• The rest of the expression doesn’t matter

• Python will realize this, and if a is False

won’t bother with the rest of the expression

22
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Short Circuiting – or

• Notice that in the expression:

bool1 = a or (b or c)

• If a is True

• The rest of the expression doesn’t matter

• Python will realize this, and if a is True

won’t bother with the rest of the expression

23
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Causing Errors

• This can lead to “new” errors in old code
>>> a = True

>>> # Variables b and c not defined

>>> a or (b and c)

True

>>> a = False

>>> a or (b and c)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

24

Python stopped at 
the “or”, so it never 

saw b or c
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Simplifying Conditionals

• Order matters!  You can use short circuiting to 
control what statements are reached

• While checking the validity of input, if
the user can also enter a “Q” to quit
if num != QUIT and int(num) > MIN_VAL:

return num

25

This will only be reached if 
num is not “Q”, so the cast to 
int() won’t cause a problem
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Project 3
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Do Not Cheat on Project 3

• Yes, this project has been given before

– Yes, in this class

– Yes, we have all of the old projects to compare it to

• Yes, this project has solutions on the internet

– Yes, we have copies of all of them

– Yes, we will go looking for new ones after it’s due

• Yes, you could pay someone else to do it

– Yes, we know of the sites where you can get this done

– Yes, we will spot “elegant” code that you didn’t write

27
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Boards in Project 3

• Discussed in class

• ¯\_(ツ)_/¯

28
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• John von Neumann
– Creator of merge sort

• We’ll learn this soon!

– Helped develop what is now 
known as “von Neumann 
architecture” (not all his work)

– Created a rigorous framework
for quantum mechanics

– Developed implosion mechanism
for nuclear bombs

29
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• ENIAC

– Completed in 1946 at UPenn

• Decommissioned in 1956

– Computations were 2,400 
times faster than humans

– Cost $6.7 million to build

– Meant to create artillery
firing tables for the US Army

– Also used for studying thermonuclear feasibility

30
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• ENIAC Programmers

– Kay McNulty, Betty Jennings, Betty Snyder, Marlyn
Meltzer, Fran Bilas, and Ruth Lichterman

– These women turned abstract
ideas into working, bug-free code

• First program run on ENIAC had
a million individual punchcards

– Programming was seen back then
as “easy” work, akin to typing up 
a handwritten letter  

31
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Announcements

• Project 3 design is due on Friday, May 3rd

– Project itself is due on Friday, May 10th

• Survey #3 out on Monday, May 6th

• Course evaluations are (not out yet)

• Final exam is when?

– Friday, May 17th from 6 to 8 PM

32



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• ASCII table (adapted from):

– https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

• Generic kitten:
– http://www.publicdomainpictures.net/view-image.php?image=87454

• Generic puppy:
– http://www.publicdomainpictures.net/view-image.php?image=192231

• John von Neumann:
– https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif

• ENIAC (adapted from):
– https://commons.wikimedia.org/wiki/File:Eniac.jpg

• ENIAC programmers (adapted from):
– https://commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png

• Mad emoji (adapted from):
– https://commons.wikimedia.org/wiki/File:Twemoji_1f620.svg
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