
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 20 – Project 3
and Miscellaneous Topics

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Dictionaries

– Creating

– Accessing

– Manipulating

– Methods

• Hashing

• Dictionaries vs Lists

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To understand more about how data is
represented inside the computer

– Binary numbers

• To see the benefits of short circuit evaluation

• To discuss details of Project 3

– How many boards to have?

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Binary Numbers

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Numbers

• Computers store all information (code, text,
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the
computer know what type of item/object it is

• But why use binary?

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc.

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal Example

• How do we represent a number like 50,932?

8

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 = 2

3 x 101 = 30

9 x 102 = 900

0 x 103 = 0000

5 x 104 = 50000

Total: 50932

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Another Decimal Example

9

6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Example

• Let’s do the same with 10110 in binary

10

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 = 0

1 x 21 = 2

1 x 22 = 4

0 x 23 = 0

1 x 24 = 16

--

Total: 22

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary to Decimal Conversion

11

• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Converting From Binary

12

• What are the decimals equivalents of…

101

1111

100000

101010

0010 1010

1000 0000

Longer binary numbers are
often broken into blocks of
four digits for the sake of

readability

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Converting From Binary

13

• What are the decimals equivalents of…

101 = 4+0+1 = 5

1111 = 8+4+2+1 = 15

100000 = 32+0+0+0+0+0 = 32

101010 = 32+0+8+0+2+0 = 42

0010 1010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal to Binary Conversion

14

• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest binary value
• Step 3: If binary value is smaller, put a 1 there and

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

1 0 1 11 0 0 0

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Converting to Binary

• What are the binary equivalents of…

9

27

68

216

255

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Converting to Binary

• What are the binary equivalents of…

9 = 1001 (or 8+1)

27 = 0001 1011 (or 16+8+2+1)

68 = 0100 0100 (or 64+4)

216 = 1101 1000

(or 128+64+16+8)

255 = 1111 1111

(or 128+64+32+16+8+4+2+1)

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Tips and Tricks

• Some “sanity checking” rules for conversions:

1. Binary can only be 1 or 0

– If you get “2” of something, it’s wrong

2. Odd numbers must have a 1 in the ones column

– Why? (And what’s the rule for even numbers?)

3. Each column’s value is the sum of all of the
previous columns (to the right) plus one

– In decimal, what column comes after 999?

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted18

“Short Circuit” Evaluation

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Review: Complex Expressions

• We can put multiple operators together!
bool4 = a and (b or c)

• What does Python do first?

– Computes (b or c)

– Computes a and the result

19

This isn’t
strictly true!

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuit Evaluation

• Python tries to be efficient (i.e., lazy), and so it
won’t do any more work than necessary

– If the remainder of an expression won’t change
the outcome, Python doesn’t look at it

• This is called “short circuiting”

– It’s a powerful tool, and can simplify the
conditionals in your programs

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuit Evaluation – Rules

• For obvious reasons, short circuiting behaves
differently for and and or statements

• “and” statements short circuit as soon as an
expression evaluates to False

• “or” statements short circuit as soon as an
expression evaluates to True

21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuiting – and

• Notice that in the expression:

bool1 = a and (b or c)

• If a is False

• The rest of the expression doesn’t matter

• Python will realize this, and if a is False

won’t bother with the rest of the expression

22

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Short Circuiting – or

• Notice that in the expression:

bool1 = a or (b or c)

• If a is True

• The rest of the expression doesn’t matter

• Python will realize this, and if a is True

won’t bother with the rest of the expression

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Causing Errors

• This can lead to “new” errors in old code
>>> a = True

>>> # Variables b and c not defined

>>> a or (b and c)

True

>>> a = False

>>> a or (b and c)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

24

Python stopped at
the “or”, so it never

saw b or c

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Simplifying Conditionals

• Order matters! You can use short circuiting to
control what statements are reached

• While checking the validity of input, if
the user can also enter a “Q” to quit
if num != QUIT and int(num) > MIN_VAL:

return num

25

This will only be reached if
num is not “Q”, so the cast to
int() won’t cause a problem

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted26

Project 3

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Do Not Cheat on Project 3

• Yes, this project has been given before

– Yes, in this class

– Yes, we have all of the old projects to compare it to

• Yes, this project has solutions on the internet

– Yes, we have copies of all of them

– Yes, we will go looking for new ones after it’s due

• Yes, you could pay someone else to do it

– Yes, we know of the sites where you can get this done

– Yes, we will spot “elegant” code that you didn’t write

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Boards in Project 3

• Discussed in class

• ¯_(ツ)_/¯

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• John von Neumann
– Creator of merge sort

• We’ll learn this soon!

– Helped develop what is now
known as “von Neumann
architecture” (not all his work)

– Created a rigorous framework
for quantum mechanics

– Developed implosion mechanism
for nuclear bombs

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• ENIAC

– Completed in 1946 at UPenn

• Decommissioned in 1956

– Computations were 2,400
times faster than humans

– Cost $6.7 million to build

– Meant to create artillery
firing tables for the US Army

– Also used for studying thermonuclear feasibility

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• ENIAC Programmers

– Kay McNulty, Betty Jennings, Betty Snyder, Marlyn
Meltzer, Fran Bilas, and Ruth Lichterman

– These women turned abstract
ideas into working, bug-free code

• First program run on ENIAC had
a million individual punchcards

– Programming was seen back then
as “easy” work, akin to typing up
a handwritten letter

31

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 3 design is due on Friday, May 3rd

– Project itself is due on Friday, May 10th

• Survey #3 out on Monday, May 6th

• Course evaluations are (not out yet)

• Final exam is when?

– Friday, May 17th from 6 to 8 PM

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• ASCII table (adapted from):

– https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

• Generic kitten:
– http://www.publicdomainpictures.net/view-image.php?image=87454

• Generic puppy:
– http://www.publicdomainpictures.net/view-image.php?image=192231

• John von Neumann:
– https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif

• ENIAC (adapted from):
– https://commons.wikimedia.org/wiki/File:Eniac.jpg

• ENIAC programmers (adapted from):
– https://commons.wikimedia.org/wiki/File:Reprogramming_ENIAC.png

• Mad emoji (adapted from):
– https://commons.wikimedia.org/wiki/File:Twemoji_1f620.svg

33

